Exercise 3

In each case, find all the roots in rectangular coordinates, exhibit them as vertices of certain regular polygons, and identify the principal root:

$$
\begin{gathered}
\text { (a) }(-1)^{1 / 3} ; \quad \text { (b) } 8^{1 / 6} . \\
\text { Ans. (b) } \pm \sqrt{2}, \pm \frac{1+\sqrt{3} i}{\sqrt{2}}, \pm \frac{1-\sqrt{3} i}{\sqrt{2}} .
\end{gathered}
$$

Solution

Part (a)
For a nonzero complex number $z=r e^{i(\Theta+2 \pi k)}$, its third roots are

$$
z^{1 / 3}=\left[r e^{i(\Theta+2 \pi k)}\right]^{1 / 3}=r^{1 / 3} \exp \left(i \frac{\Theta+2 \pi k}{3}\right), \quad k=0,1,2 .
$$

The magnitude and principal argument of -1 are respectively $r=1$ and $\Theta=\pi$.

$$
(-1)^{1 / 3}=1^{1 / 3} \exp \left(i \frac{\pi+2 \pi k}{3}\right), \quad k=0,1,2
$$

The first, or principal, root $(k=0)$ is

$$
(-1)^{1 / 3}=1^{1 / 3} e^{i \pi / 3}=1\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=\frac{1}{2}+i \frac{\sqrt{3}}{2}=\frac{1}{2}(1+\sqrt{3} i),
$$

the second root $(k=1)$ is

$$
(-1)^{1 / 3}=1^{1 / 3} e^{i \pi}=1(\cos \pi+i \sin \pi)=-1+i(0)=-1,
$$

and the third root $(k=2)$ is

$$
(-1)^{1 / 3}=1^{1 / 3} e^{i 5 \pi / 3}=1\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)=\frac{1}{2}-i \frac{\sqrt{3}}{2}=\frac{1}{2}(1-\sqrt{3} i) .
$$

Part (b)

For a nonzero complex number $z=r e^{i(\Theta+2 \pi k)}$, its sixth roots are

$$
z^{1 / 6}=\left[r e^{i(\Theta+2 \pi k)}\right]^{1 / 6}=r^{1 / 6} \exp \left(i \frac{\Theta+2 \pi k}{6}\right), \quad k=0,1,2,3,4,5 .
$$

The magnitude and principal argument of 8 are respectively $r=8$ and $\Theta=0$.

$$
8^{1 / 6}=8^{1 / 6} \exp \left(\frac{i \pi k}{3}\right), \quad k=0,1,2,3,4,5
$$

The first, or principal, root $(k=0)$ is

$$
8^{1 / 6}=8^{1 / 6} e^{0}=\sqrt{2},
$$

the second root $(k=1)$ is

$$
8^{1 / 6}=8^{1 / 6} e^{i \pi / 3}=\sqrt{2}\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)=\sqrt{2}\left(\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=\frac{1}{\sqrt{2}}(1+\sqrt{3} i),
$$

the third root $(k=2)$ is

$$
8^{1 / 6}=8^{1 / 6} e^{i 2 \pi / 3}=\sqrt{2}\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)=\sqrt{2}\left(-\frac{1}{2}+i \frac{\sqrt{3}}{2}\right)=\frac{1}{\sqrt{2}}(-1+\sqrt{3} i),
$$

the fourth root $(k=3)$ is

$$
8^{1 / 6}=8^{1 / 6} e^{i \pi}=\sqrt{2}(\cos \pi+i \sin \pi)=\sqrt{2}(-1+i 0)=-\sqrt{2},
$$

the fifth root $(k=4)$ is

$$
8^{1 / 6}=8^{1 / 6} e^{i 4 \pi / 3}=\sqrt{2}\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)=\sqrt{2}\left(-\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)=-\frac{1}{\sqrt{2}}(1+\sqrt{3} i),
$$

and the sixth root $(k=5)$ is

$$
8^{1 / 6}=8^{1 / 6} e^{i 5 \pi / 3}=\sqrt{2}\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right)=\sqrt{2}\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)=\frac{1}{\sqrt{2}}(1-\sqrt{3} i) .
$$

